

RESERVOIR GEOLOGY AND MODELLING

Petroleum Geoscience Engineer MSc

2020/21. I. Semester

COURSE COMMUNICATION FOLDER

University of Miskolc Faculty of Earth Science and Engineering Institute of Mineralogy and Geology

Course Title: Reservoir geology and modeling

Credits: 3

Type (lec. / sem. / lab. / consult.) and Number of Contact Hours per Week: lec. 2, sem. 1

Neptun code: MFFAT730002

Type of Assessment(exam. / pr. mark. / other):exam

Grading limits:

>80%: excellent, 70-80%: good, 60-70%: medium, 50-60%: satisfactory, <50%: unsatisfactory.

Position in Curriculum (which semester): third

Pre-requisites (*if any*):

Course Description:

Acquired store of learning:

<u>Study goals</u>: Reservoir geology is a fundamental skill to integrate data from various disciplines at different scales from the exploration to the production of oil and gas. Through 3D modelling and visualisation packages high-resolution models but require well trained professionals with good command on the basics and on manual skills of core-, log-, test evaluation and mapping procedures to properly select input and to understand and validate output data (QC).

<u>Course content:</u>Introduction – aims and role of integrated reservoir management in the upstream value chain.Reservoir Geology – why is it a fundamental component in reservoir management?Phases in Reservoir Geology: from operative plans to strategic vision.Consistency and coherency: key elements of understanding our reservoirs properly. Duties of geoscientists and engineers. Analysis of Reservoir Rocks – the only source of direct measurements and observations. Cores and core description. Lithology, facies and facies groups, lithostratigraphy. Depositional and diagenetic history: main factors controlling reservoir heterogeneity. Conventional (CCAL) and special core analysis (SCAL): elements connecting static and dynamic models. Determination of reservoir geometry – steps to determine reservoir bulk rock volume (BRV). Stratigraphic correlation panels: zonation of stratigraphic sequences. Tectono-stratigraphic charts: summarising stratigraphic units and hiatus. Structural cross sections: determination and visualisation of structural elements. Reservoir zonation: determining and visualising reservoir complexity as the main element controlling subsurface fluid flow. Determination of Pay Rock Volume (PRV). Tectonic/structural implications controlling the spatial extension of reservoir rock(s). Lithological and petrophysical implications controlling reservoir rock heterogeneity andsubsurface flow. Definition of fluid contact

types. Vertical delineation of PRV: practical determination of oil/water and gas/oil contacts. Visualisation of hydrocarbon saturation distribution: contact charts and saturation profiles. Reservoir geological (static) model and volumetric determination of Petroleum Initially - in – Place (PIIP). Selection, acquisition, integrated validation and management of subsurface data for calculating PIIP. Assessment of uncertainties in delineation of pay rock volume. Mapping reservoir structure, gross and net thickness, and reservoir properties. Rules of determining and mapping reservoir thickness values. Principles of mapping reservoir parameters. Steps of building a high resolution 3-D model. Feedback from dynamic model and field performance data to upgrade the static model. Resource – reserves categorization (terms and definitions;classification/categorization systems,SEC and SPE-PRMS, UNFC as most frequently used systems; challenges and responses).

Education method:

Competencies to evolve:

T1, T2, T4, T5, T6, T7, T8, T9, T10, T12, K3, K4, K5, K6, K7, K8, K9, K10, K11, A1

The 3-5 most important compulsory, or recommended literature (textbook, book) resources:

- István BÉRCZI: Development Geology, HOT Engineering, 2009. 480p.
- CATAPANG, Timothy John: Basic Petroleum Geology.
- SELLEY, R. C.: Elements of Petroleum Geology.
- University of Texas: Petroleum Geology & Reservoirs, www.utexas.edu.
- Ashton, Michael: Advances in reservoir geology. The Geological Society, 1992 240 p.
- Hocott, C. R.: Basic reservoir engineering for geologists., The Geological Society, 1978 42 p.

Responsible Instructor(*name*, *position*, *scientific degree*):

Viktor Mádai Dr., associate professor, PhD

Syllabus of the semester Tuesday, 14:00 – 17:00

Date	Lecture	Practical
2020.09.08.	Introduction – aims and role of integrated reservoir	Overview. Introduction.
	management in the upstream value chain.	basic requirements
2020.09.15.	Reservoir Geology – why is it a fundamental	COGEH Reserve
	component in reservoir management? Phases in	Classifications.
	Reservoir Geology: from operative plans to strategic	Volumetric Estimations
	vision. Consistency and coherency: key elements of	
	understanding our reservoirs properly	
2020.09.22.	Duties of geoscientists and engineers. Analysis of	Decline Analysis
	Reservoir Rocks – the only source of direct	
	measurements and observations	
2020.09.29.	Cores and core description. Lithology, facies and facies	Material Balance
	groups, lithostratigraphy. Depositional and diagenetic	Analysis
	history: main factors controlling reservoir	5
	heterogeneity. Conventional (CCAL) and special core	
	analysis (SCAL): elements connecting static and	
	dynamic models	
2020.10.06.	Determination of reservoir geometry – steps to	Material Balance for Oil
	determine reservoir bulk rock volume (BRV).	Reservoirs
	Stratigraphic correlation panels: zonation of	
	stratigraphic sequences. Tectono-stratigraphic charts:	
	summarising stratigraphic units and hiatus	
2020.10.13.	Structural cross sections: determination and	Well Test Interpretation
	visualisation of structural elements. Reservoir zonation:	L. L.
	determining and visualising reservoir complexity as the	
	main element controlling subsurface fluid flow	
2020.10.20.	Determination of Pay Rock Volume (PRV).	Rate Transient Analysis
	Tectonic/structural implications controlling the spatial	
	extension of reservoir rock(s). Lithological and	
	petrophysical implications controlling reservoir rock	
	heterogeneity and subsurface flow.	
2020.10.27.	Definition of fluid contact types. Vertical delineation of	Rate Transient Analysis
	PRV: practical determination of oil/water and gas/oil	
	contacts	
2020.11.03.	Visualisation of hydrocarbon saturation distribution:	Monte Carlo Simulation
	contact charts and saturation profiles	
2020.11.10.	Reservoir geological (static) model and volumetric	Monte Carlo Simulation
	determination of Petroleum Initially - in – Place (PIIP).	(cont.)
2020.11.17.	Selection, acquisition, integrated validation and	Monte Carlo Simulation
	management of subsurface data for calculating	(cont.)
2020.11.24.	PIIP. Assessment of uncertainties in delineation of pay	Coalbed Methane
	rock volume. Mapping reservoir structure, gross and	Fundamentals
	net thickness, and reservoir properties. Rules of	
	determining and mapping reservoir thickness values	
2020.12.01.	Principles of mapping reservoir parameters. Steps of	Geological Storage of
	building a high resolution 3-D model. Feedback from	CO2
	dynamic model and field performance data to upgrade	
	the static model	
2020.12.08.	Resource – reserves categorization (terms and	Reservoir Simulation
	definitions; classification/categorization systems. SEC	

and SPE-PRMS, UNFC as most frequently used	
systems; challenges and responses)	

3. EXAM QUESTIONS

- 1. Reservoir Geology: from operative plans to strategic vision.
- 2. Duties of geoscientists and engineers.
- 3. Cores and core description. Lithology, facies and facies groups.
- 4. Determination of reservoir geometry steps to determine reservoir bulk rock volume.
- 5. Structural cross sections: determination and visualisation of structural elements.
- 6. Determination of Pay Rock Volume (PRV)..
- 7. Definition of fluid contact types. Vertical delineation of PRV.

8. Reservoir geological (static) model and volumetric determination of Petroleum Initially - in – Place (PIIP)..

9. Principles of mapping reservoir parameters

10. Resource – reserves categorization (terms and definitions; classification/categorization systems, SEC and SPE-PRMS, UNFC as most frequently used systems.

4. OTHER REQUIREMENTS

A zárthelyi dolgozat írása és a vizsga közben a mobiltelefon használata tilos!

Miskolc, 2020. August 27.

Dr. Viktor Mádai associate professor